If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 6m2 + 10m + 1 = 0 Reorder the terms: 1 + 10m + 6m2 = 0 Solving 1 + 10m + 6m2 = 0 Solving for variable 'm'. Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 0.1666666667 + 1.666666667m + m2 = 0 Move the constant term to the right: Add '-0.1666666667' to each side of the equation. 0.1666666667 + 1.666666667m + -0.1666666667 + m2 = 0 + -0.1666666667 Reorder the terms: 0.1666666667 + -0.1666666667 + 1.666666667m + m2 = 0 + -0.1666666667 Combine like terms: 0.1666666667 + -0.1666666667 = 0.0000000000 0.0000000000 + 1.666666667m + m2 = 0 + -0.1666666667 1.666666667m + m2 = 0 + -0.1666666667 Combine like terms: 0 + -0.1666666667 = -0.1666666667 1.666666667m + m2 = -0.1666666667 The m term is 1.666666667m. Take half its coefficient (0.8333333335). Square it (0.6944444447) and add it to both sides. Add '0.6944444447' to each side of the equation. 1.666666667m + 0.6944444447 + m2 = -0.1666666667 + 0.6944444447 Reorder the terms: 0.6944444447 + 1.666666667m + m2 = -0.1666666667 + 0.6944444447 Combine like terms: -0.1666666667 + 0.6944444447 = 0.527777778 0.6944444447 + 1.666666667m + m2 = 0.527777778 Factor a perfect square on the left side: (m + 0.8333333335)(m + 0.8333333335) = 0.527777778 Calculate the square root of the right side: 0.726483157 Break this problem into two subproblems by setting (m + 0.8333333335) equal to 0.726483157 and -0.726483157.Subproblem 1
m + 0.8333333335 = 0.726483157 Simplifying m + 0.8333333335 = 0.726483157 Reorder the terms: 0.8333333335 + m = 0.726483157 Solving 0.8333333335 + m = 0.726483157 Solving for variable 'm'. Move all terms containing m to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + m = 0.726483157 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + m = 0.726483157 + -0.8333333335 m = 0.726483157 + -0.8333333335 Combine like terms: 0.726483157 + -0.8333333335 = -0.1068501765 m = -0.1068501765 Simplifying m = -0.1068501765Subproblem 2
m + 0.8333333335 = -0.726483157 Simplifying m + 0.8333333335 = -0.726483157 Reorder the terms: 0.8333333335 + m = -0.726483157 Solving 0.8333333335 + m = -0.726483157 Solving for variable 'm'. Move all terms containing m to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + m = -0.726483157 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + m = -0.726483157 + -0.8333333335 m = -0.726483157 + -0.8333333335 Combine like terms: -0.726483157 + -0.8333333335 = -1.5598164905 m = -1.5598164905 Simplifying m = -1.5598164905Solution
The solution to the problem is based on the solutions from the subproblems. m = {-0.1068501765, -1.5598164905}
| 2x+3yi=2+9i | | (x2+10x-15)/(x3-2x2-x+2) | | 6n+1=-6 | | 6n+1=1 | | -3(t-2)+7t=8t-7 | | 7x-5=7(x-3) | | x^2=8-15 | | X/5+1=x/5 | | 10+3=13 | | (2+2/5*5*2)*2= | | (3x^2+20x+28)/(x+5) | | 0.14(y-6)+0.04y=0.06y-0.05(30) | | -4(2)*2+5*3/5= | | 3(5)*3+10= | | 4(x+3)=2x-1 | | 0.80x+0.25(40)=0.40(43) | | 6a-30=5 | | ln(x)+ln(x+10)=8 | | 9x+12y+24= | | -3x^2+24x+99=0 | | -7(x-3)+2=23 | | 5(2y)-1-2(2y)=4 | | -2x+1/4=2x+4/5 | | -7/8c+5.6=-5/8c-3.3 | | (10x^6)+(8^4)/2x^2 | | 7/x+5+3/x | | 2(x-1)-9=6x-4(4-x) | | 50+25x=25+30x | | 4x+2=4(x+6) | | y-(-1)=1/4(-3)(x-3)2 | | 4=7/5-2/x | | 3x+1/8=4x+5/8 |